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FLUX METHOD IN THE KINETICS OF COAGULATION 

A. A. Likal'mer UDC 54-138 

Coagulation causes broad fluctuations in the concentration and size distribution of 
aerosol particles [I]. Measured particle-radius distributions are dome-shaped. The top part 
of the dome is usually described by the so-called log-normal distribution. The right: side 
may descend significantly slower than the left side in accordance with a power law [2]. A 
power spectrum was observed for an atmospheric aerosol in [3]. Later on it was explained on 
the basis of a representation of constant mass flux over the particle spectrum. The form of 
the spectrum follows from dimensional considerations with the use of the locality hypothesis 
[4, 5], to within the accuracy of a coefficient. A stationary spectrum was obtained in [6] 
on the basis of a kinetic equation. Stationary power spectra with thermal and gravitational 
coagulation in different ranges of particle radius were obtained in [7] along with coeffi- 
cients. It was shown in [8] that these results follow from a more general analysis of the 
kinetic equation with the use of the notions of fluxes of particles and mass over the spec- 
trum. However, until now there has been no direct kinetic determination of the flux, which 
is important in the theory of coagulation and in certain other similar problems. 

This article explicitly determines the flux of the number and volume of particles (drops) 
over the spectrum corresponding to the physical significance of these quantities. This 
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approach (in large part similar to that developed earlier in oscillatory kinetics [9]) im- 
mediately leads to stationary power distributions and can prove useful in analyzing more com- 
plex problems. The other problem examined is the evolution of the log-normal distribution. 
It is shown that the fluctuation in the number of drops over the spectrum is characterized 
by a finite effective mean free path, so that it is possible to use equations of the Fokker-- 
Planck type. We introduce a logarithmic particle-radius scale in which the equation takes a 
form permitting an analogy with the motion of a gas. The rate of propagation of the maximum 
of the distribution is calculated. Normalization conditions are used to find the time de- 
pendence of parameters of the log-normal distribution. 

I. We will examine how particles and volume change over a spectrum. The result of the 
union of drops I and 2 of radii rl < re is conveniently represented as follows: the first 
drop disappears, while the second is shifted along the radius to point 3 in accordance with 
the law of volume conservation r~ = r~ + r~. The shifting of a large drop makes a contribu- 
tion to the flux in the number of drops in a space of radii j. The shift is greatest when 
drops of the same size unite: r3 = 21~3r2. The quantity (I/3) In 2 plays the role of the char- 
acteristic path length of the particles in the logarithmic scale of radii inr. The disappear- 
ance of the smaller particle merging with a larger particle represents a contribution to the 
discharge C. 

The above interpretation makes it possible to write the coagulation equation in the form 
of a conservation law: 

On/Ot = - - ~ / O r  - -  C~ ( 1 . 1 )  

where 

] (r) = j J K (q,  r2) n (ri) n (r~) dqdr2; (1. 2) 
D 

(r) = n (r) ~ K (r, q )  n (rl) dr r c ( 1. 3 ) 
r 

Here  n ( r )  i s  t h e  d e n s i t y  o f  t h e  number  of  d r o p s  in  t h e  r a d i u s  s p a c e ;  t i s  t i m e ;  K ( r z ,  r2)  i s  
t h e  c o a g u l a t i o n  r a t e  c o e f f i c i e n t .  The r e g i o n  of  i n t e g r a t i o n  D in ( 1 . 2 )  i s  d e t e r m i n e d  by  the  
i n e q u a l i t i e s  r l  < re  < r and r~ + r~ > r 3 ( F i g .  1) .  The c o e f f i c i e n t  o f  t h e  r a t e  o f  t h e r m a l  
(Brownian)  c o a g u l a t i o n  f o r  p a r t i c l e s  w i t h  r a d i i  g r e a t e r  t h a n  0.1 ~m h a s  t he  f o r m  [1] 

g ~ l ,  r~) = (2kT/3~)(2 + q / r  2 + r~/r1), ( 1 . 4 )  

where  T i s  t e m p e r a t u r e ;  q i s  t h e  v i s c o s i t y  of  t h e  g a s ;  k i s  t h e  Bo l t zmann  c o n s t a n t .  

The i n t e g r a l  ( 1 . 2 )  o v e r  t he  r e g i o n  D can  be  r e p r e s e n t e d  a s  t h e  d i f f e r e n c e  b e t w e e n  t h e  
i n t e g r a l s  o v e r  t he  r e g i o n s  D ' ( r l  < r2 < r )  and D " ( r l  < r 2 ,  r~ + r~ < r 3 ) .  Then the  d e r i v a t i v e  
~j/~r is written in the form 

ar = n (0  K ( r .  r) n(rO dr~ - -  g ( r .  r,) ,~ (rO '~ (r~) 6 [(r, ~ + r~)'3 - -  r] drldr~. 
0 rl<r 2 �9 - 

Insertion of this expression into (I .I) reduces the coagulation equation to standard form 
(see [2], for example). 

The flux in the number of particles j, generally speaking, is nonlocal. However, in a 
scale which is large compared to the characteristic path length of the particles in the radius 
space, the flux j can be considered local. This makes it possible to change Eq. (1.1) to the 
form of a volume conservation law. 

Multiplying (1.1) by the volume of a drop v(r), we obtain an equation for the density of 
the volume vn on the radius axis: 

0 (~,n) a 
Ot Or (V]) + /)']--VC, (1 .5)  

where the prime denotes a derivative with respect to r. If we regard the flux j as local, 
then vj is convective flux of the volume connected with the flux in the number of drops; v'j 
and vC are the volume source and sink. Since drop volume is conserved during coagulation, 
the difference between the source and sink can be represented in the form of the divergence 
of the flux of the transferred volume: 
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(].6) 

The flux of the volume transferred to the section r of the radius axis is determined by the 

expression 

H ( r ) =  # ~ v(rl) K (r 1,r2) n ( r l )n ( r jdhdr~ .  ( 1 . 7 )  rl <r~r 2 
The r e g i o n  of  i n t e g r a t i o n  in  ( 1 . 7 )  i s  d e s i g n a t e d  by S in  F i g .  ! .  The f l u x  H(r )  c o r r e s p o n d s  
to  t h e  t r a n s f e r  o f  a volume a c r o s s  t h e  s e c t i o n  r in  t he  r a d i u s  s p a c e  w i t h o u t  t h e  i n t e r s e c t i o n  
of  r by t h e  p a r t i c l e s ,  in  c o n t r a s t  t o  c o n v e c t i v e  f l o w  v j  ( F i g .  2 ) .  

With t h e  s u b s t i t u t i o n  o f  Eq. ( 1 . 6 ) ,  Eq. ( 1 . 5 )  t a k e s  t h e  f o r m  of  a c o n t i n u i t y  e q u a t i o n  

O(vn)/Ot : --O/lOr, F = ~ + H,, ( 1 . 8 )  

where F is the total flux of volume in the radius space. Thus, the drop volume is trans- 
ferred in the radius space in the form of a flux F consisting of two parts: convective flow 

of the volume and flow of the transferred volume. 

Continuity equation (1.8) makes sense only in a scale which is large compared to the 
characteristic path length on the radius axis, equal in the logarithmic scale Inr to (I/3) • 
In 2. The essence of the matter is that the transferred volume cannot be localized exactly on 
the radius axis, since it is spread over the path length. In fact, in the process (i) + 
(2') + (3') the total volume in the interval (r2', r3') (but not at point 3') increases by vz. 
It should be noted that Eq. (1.6) exists with the same accuracy (if the path length is as- 
sumed to be small). We can assure ourselves of this indirectly by calculating the derivative 

3~/~r by determining (1.7). 

2. In the stationary case, the flux F is equal to the productivity of the source 

F = W + II = c o n s t .  ( 2 . 1 )  

We will seek a power solution to Eq. (2.1) n ~ I/r m. 
(].4), we represent the flux in the form 

f = vn~r2(O~ + e ~ ) ,  

where Qm and Pm depend only on the exponent m 

Using the homogeneity of the kernel 

( 2 . 2 )  

~ dxldx~" 
Qm = K (Xi, x2) -w-~ , (2 .3)  

O ( X l ~ X 2 ( 1  z 1 z~  
8 3 

X l i X 2 > l  

SS :(x, z2) dxl dx 2 . 
(2.4) 

O < x l < l < x 2  Xl x 2 

The convective flux and the flux of the transferred volume are, respectively, proportional 

to Qm and Pm. 

Inserting (2.2) into (2.1) and considering that v ~ r 3, we obtain 

n(r) N t/ra/~. (2 .5)  
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It is easily seen that the integrals (2.3) and (2.4) agree with m = 5/2. The first re- 
duces to a single integration, which is done numerically. The integral (2.4) is calculated as 
elementary. The numerical values of the coefficients Q5/2 ~ 1.21(2kT/3~) and P5/2 = 5.05 • 
(2kT/3~). Thus, the main contribution to the volume flux is made by the flux in the trans- 
ferred volume H. Inserting the quantities Qs/2 and P5/2 into (2.2) gives us the following 
equation, in accordance with [7, 8] 

n(r) = O.24(fq/kTrS)t/L (2 .6 )  

In reality the distribution (2.6) may exist on a finite interval of radii. If the region 
of the sources r < a and the region of the sink r > b, then the region of existence of dis- 
tribution (2.6) is limited by the condition a ~ r ~ b. 

For drops with radii greater than I ~m, gravitational coagulation plays an important 
role. The coefficient of the rate of gravitational coagulation is represented by a fourth- 
order homogeneous function of the radii [I]. Here, the volume flux in the radius space F 
r6vn 2 . From this, we find that the stationary distribution is gravitational coagulation n~ 
r -9/2 The complete distribution for this case is presented in [7, 8]. 

3. We will examine the problem of the evolution of a nonstationary dome-shaped drop- 
radius distribution which quickly falls off for small and large radii. We will examine the 
neighborhood of the maximum of the distribution, at which most of the drops are distributed. 
Here, Eq. (1.1) can be simplified by employing the slight change of the distribution in the 
neighborhood of the maximum. 

We will show that Eq. (1.2) for j can be represented in simple algebraic form. In the 
region of integration r2 changes within the range from r/2 I/3 to r, which is equal to the 
characteristic path length of the particles in the radius space (Fig. I). Assuming the change 
in n(r) in this space to be small, we move the multiplier n(r2) out from under the integral 
sign. We then note that a large rl corresponds to a long path length, so the neighborhood 
rl ~ r makes the main contribution to the integral. Thus, the multiplier n(rl) can also be 
moved from under the integral at point r. Using the homogeneity of the kernel (1.4), we ob- 
tain 

] ~ Qor~n% (3 .1 )  

where Q0 is determined by Eq. (2.3) with m = O. Calculation of the integral gives Q0 = J x 
(2kT/3n), J ~ 0.2]2. 

Inserting (3.1) and (1.3) into (1.1) gives us the equation 

On 0 r2n~ ~ ( 3 . 2 )  
Ot = - -  Qo -~r - -  n o K (r ,  r~) n (r2)  d r  2. 

�9 r 

We introduce the logarithmic radius scale y = In (r/r0), where r0 is a certain scale. 
We designate the density of the drops in this scale as u(y) = n(r)/(dy/dr) = rn(r). We in- 
troduce another new time scale �9 = 2Q0t. A substitution of variables reduces Eq. (3.2) to the 

form 

Ou Ou 
o~ + u  oy = - - u  B(y ,  gl) u(yl)dyt ,  (3 .3 )  

Y 

where 

R(y, yl) - ( t / J ) [ l  @ ch ( g - -  gl)]. ( 3 .4 )  

We s h o u l d  n o t e  the  e v i d e n t  a n a l o g y  be tween  Eq. (3 .3 )  and the  e q u a t i o n s  of  mo t ion  of  a 
g a s .  The l e f t  s i d e  of Eq. (3 .3 )  can be r e p r e s e n t e d  in  t he  form of  a d e r i v a t i v e  a l o n g  the  
c h a r a c t e r i s t i c  dy/d~ = u ,  b e i n g  the  t r a j e c t o r y  of  mo t ion  wi th  the  v e l o c i t y  u :  

i B (g, YOu(gOdYl. 
d lnu (3.5) 
dT 

Y 

Equation (3.5) describes the decrease in velocity u along the characteristic. 

The velocity decrease is smallest in the forward part of the moving velocity profile 
u(y). If the decrease is small, the curvature of the profile will increased. Thus, the 
faster-moving parts, coming from behind, accelerate the forward parts. As a result, the 
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analogy with gasdynamic motion is manifest in the possibility of the formation of a steep 
leading edge on the moving profile. 

We introduce the rate of propagation of the maximum of the profile 

uo = dgm/d~, ( 3 . 6 )  

where Ym is determined by the equation 8u/3y = 0. Differentiating the latter equation along 
the trajectory of the maximum ym(T), we obtain 

(a~ulazoy)~ + uo (a~ulay~),~ = o. (3.7) 
Differentiating with respect to y, we obtain the following from Eq. (3.3) for 3u/3y = 0 

a,rau /m + u m  \ au---~,. ] ~ = - 7  2urn - -  o sh (y,~ - -  gl) u (Yl) dg~ �9 
Yrrt 

(3.8) 

Excluding the time derivative, we obtain an expression for u0 from (3.7) and (3..8) 

2~,,, + S ~h (yl - urn) ~ (yO dy, 

uo=u  i -  (3.9) 

In accordance with (3.9), the rate of propasation of the velocity profile maximum ex- 
ceeds the value of the maximum Um [since (82u/3yZ) m < 0]. This phenomenon of "advance" 
propagation of the maximum is due to an increase in the decay of velocity from the front to 
the rear part of the profile. 

Substituting a Gaussian distribution near the maximum u(y) 

u(#) ~__ um exp [ - - a (y  - -  ym)2], ( 3 . 1 0 )  

from (3.9) we obtain an estimate of the rate of propagation across the maximum and the param- 
eter a, determining the width of the profile 

Uo ~ Um l - b - 7 -  + 4 a3/2 

w h e r e  ~ (1 /2~-a )  i s  t h e  e r r o r  i n t e g r a l .  

Equations (3.6) and (3.10), together with the law of change in the total number of drops 
over time 

and the condition of conservation of the total volume of the drops 

V / V  o = N e x p  (3Urn + 9/4a), V o = 4 ~ r ~ / 3 ,  

makes it possible to find the time dependence of all of the parameters of the Gaussian dis- 
tribution (3.10). 

With large T, asymptotically a ~ const, Ym ~ (I/3) In T § const, and u m ~ I/~. 

4. In conclusion, we will briefly discuss the results of the experiment in [10], where 
a study was made of the radius distribution of drops of Ale03 in a flame during the combustion 
of a metallized fuel. Samples were taken with a filter, and combustion products that were 
rising and moving laterally during convection passed through the filter. Solidified spherical 
particles of aluminum oxide that accumulated in the filter were later analyzed under an elec- 
tron microscope. Here, the spectrum of the drops (curve I in Fig. 3) was averaged ower the 
time of the experiment. Judging from the character of the spectrum, in the region of about 
0.1 ~m the spectrum may be governed by steady thermal coagulation of drops with an initial 
radius no less than 0.04 ~m. An estimate of the relaxation time ~rnv/F also follows this 
probability. Figure 3 (curve 2) shows the power spectrum (2.5), which approximates the ex- 
perimental spectrum in its middle part well. 

The authors thank I. T. Yakubov for proposing the subject of this investigation and dis- 
cussing the work, D. I. Zhukhovitskii for informing us of the experiment [10], and A. G. 
Khrapak for his discussion of the study. 
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DEPOSITION OF SMALL AEROSOL PARTICLES ON THE SURFACE OF MOVING 

EVAPORATING CRYSTALS 

M. G. Markov, E. R. Shchukin, 
and Yu. I. Yalamov 

UDC 532.73:551.510 

The method of augmenting asymptotic expansions is used for the case of low diffusive 
Peclet numbers to determine the flow of aerosol particles to the surface of an evaporating 
(or growing) crystal. 

I. Formulation of the Problem. The theory of capture of small (moving in the free- 
molecular regime) aerosol particles by evaporating or condensing drops has by now been de- 
veloped in quite an amount of detail [I-3]. As concerns processes of the capture of aerosols 
particles by evaporating or growing crystals, the theory is considerably less well developed. 

A characteristic feature of particles of the solid phase (collectors) is their nonspher- 
ical form, which is considered in the present study. 

We will examine a large (Knudsen number Kn = 0) evaporating particle of a solid phase 
suspended in a vapor--gas mixture. The theoretical analysis will be made for the case when 
the Reynolds number and the diffusive and thermal Peclet numbers are small, so that the equa- 
tions of hydrodynamics and heat and mass transfer near the particle surface have the form 

v A v  = - - V p / p e ,  d i v v  ~ O, ATe,  i = O, Ac 1 = O, (1.1) 

where v, Pc, P, and Te are the velocity, density, pressure, and temperature of the mixture; 
ci = nl/no; no = nl + n2 (nl and n2 are the concentrations of the vapor and gas); ~ is the 
kinematic viscosity of the mixture; Ti is the particle temperature. 

System (1.1) must be solved with allowance for the following conditions on the boundary 
between the particle (collector) and the medium: 
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